Semi-Supervised Contrastive Learning for Generalizable Motor Imagery EEG Classification

Jinpei Han, Xiao Gu, and Benny Lo

Hamlyn Centre, Imperial College London

Introduction

Motor Imagery (MI) based EEG systems

Allow users to control external devices by mental execution by non-invasive EEG recordings.

Widely used for rehabilitation engineering.

Challenges
- The evoked potential of the brain activities is weak and noisy
- Expensive and difficult to label data accurately.
- High inter-session variation and inter-subject variation.

Objective
- To develop a semi-supervised framework with a combination of self-supervised contrastive learning and adversarial training.
- Learn transformation invariant features without any labels and diminish the feature distribution of different subjects/sessions.
- Supervised learning on the partial labelled data to force the model to learn task-relevant features.

Experiment Settings
- Dataset: BCI IV2A 2 MI-EEG, binary classification (left hand and right hand)
- Encoder backbones: EEGNet-8, DeepConvNet
- Validation method: Leave-One-Session-Out (LOSO) + 10-fold cross-validation

Quantitative Results

<table>
<thead>
<tr>
<th>Models</th>
<th>10%</th>
<th>20%</th>
<th>50%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBCSP</td>
<td>54.7</td>
<td>58.8</td>
<td>62.3</td>
<td>64.8</td>
</tr>
<tr>
<td>EEGNet</td>
<td>60.7</td>
<td>68.0</td>
<td>71.4</td>
<td>75.8</td>
</tr>
<tr>
<td>DeepConvNet</td>
<td>56.2</td>
<td>65.4</td>
<td>76.5</td>
<td>80.9</td>
</tr>
<tr>
<td>Semi-EEGNet</td>
<td>66.6</td>
<td>71.5</td>
<td>75.3</td>
<td>75.6</td>
</tr>
<tr>
<td>Semi-DeepConvNet</td>
<td>67.6</td>
<td>74.3</td>
<td>77.4</td>
<td>79.4</td>
</tr>
</tbody>
</table>

Table 1 - Classification accuracy of different methods with different ratios of labels in the training.

Ablation study
evaluate the effectiveness of augmentation, contrastive learning and adversarial training

Method

The framework consists of: data augmentation, an encoder, a task classifier, a domain discriminator, and a projector.

Data augmentation

Apply two sets of augmentations to the input EEG signals \(x\) yielding \(T_1(x_i)\) and \(T_2(x_i)\)

Contrastive Learning

The Encoder \(E\) produces latent representations \(h_i = E(T_1(x_i))\) and \(h_j = E(T_2(x_j))\)

The Projector \(P\) projects latent representation \(h_i\) and \(h_j\) to a lower dimension \(z_i = P(h_i)\) and \(z_j = P(h_j)\). \(E\) and \(P\) minimise the contrastive loss \(L_{\text{contrast}}(z_i, z_j)\).

Supervised Learning

The latent representation of labelled data, \(h_{ij} \in \mathcal{L}\) are used to train the supervised classifier \(C\) and calculate a cross-entropy loss \(L_{\text{ce}}(h_{ij}, y_j)\).

Adversarial Training

The domain discriminator \(D\) is trained to predict the identities of the domains based on latent vectors \(h\) by minimising the loss \(L_{\text{adv}}\).

The encoder \(E\) is encouraged to confuse the discriminator \(D\) by minimising \(L_{\text{unsup}}\).

Discussion

- Developed domain independent, end-to-end semi-supervised learning framework for classifying MI EEG signals with limited labels.
- Our method outperforms the baseline methods when there are limited labels.
- Our work opened new possibilities for using deep neural networks for real-world applications without the need for tedious calibration processes.

Future Plan

Develop a Generative model capable of generating new meaningful data to facilitate training whilst force the Encoder to learn domain invariant MI features through the training process of the Generative model.

References

This work has been accepted by the IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN’21)